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Abstract: We present the experimental performance of a 91-actuator 
deformable mirror made of a magnetic liquid (ferrofluid) using a new 
technique that linearizes the response of the mirror by superposing a 
uniform magnetic field to the one produced by the actuators. We 
demonstrate linear driving of the mirror using influence functions, 
measured with a Fizeau interferometer, by producing the first 36 Zernikes 
polynomials. Based on our measurements, we predict achievable mean PV 
wavefront amplitudes of up to 30 µm having RMS residuals of λ/10 at 
632.8 nm. Linear combination of Zernikes and over-time repeatability are 
also demonstrated. 
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1. Introduction 

Deformable mirrors were originally developed for Astronomy but they are now used in other 
applications such as ophthalmologic, laser beam shaping and industrial applications [1–3]. 
Most deformable mirrors presently available use solid thin plates or membranes. Building 
deformable mirrors having large number of actuators is very expensive and they are typically 
limited to strokes of only a few microns. Although MEMS deformable mirrors demonstrated 
potential for low-cost and high number of actuators, they are still limited in available stroke. 
MEMS deformable mirrors are also not appropriate for optical testing applications where 
large mirror diameters are often required. A new promising technology to build a liquid 
deformable mirror that uses magnetic liquids (ferrofluids) has been suggested by Borra et al. 
in [4]. Ferrofluidic deformable mirrors (FDMs) have the major advantage over solid ones that 
these liquids have extremely smooth surfaces that naturally follow the equipotential surfaces 
created by magnetic fields. FDMs can have smooth deviations from flatness that can be as 
small as a few nanometers to as large as several millimeters. The other advantage that FDMs 
have with respect to solid deformable mirrors is their low cost per actuator. 

Ferrofluids have low reflectance and must be coated with a reflective layer. Although it 
was not necessary for this paper, we usually coat them with MeLLFs (Metal Liquid-Like 
Films) [5]. We also began working on coating ferrofluids with reflective elastomeric 
membrane coatings. FDMs are not the only approach that has been considered to make liquid 
deformable mirrors. Another approach using electrostatically deformed liquids is also 
presented in [6]. 

Many technical improvements have been made since Borra et al. in [7, 8]. However, there 
remained a major inconvenience with the early-generation of FDMs that came from the fact 
that the surface of the liquid is shaped by a magnetic vector field and that the induced 
deformations depends on the square of the magnetic field, requiring novel complicated 
control algorithms [7]. A major technical breakthrough that overcomes these problems was 
recently proposed by Iqbal and Amara [9, 10]. The simple, yet powerful, technique described 
in [9, 10] superposes a strong and uniform magnetic field to the magnetic field of the 
actuators, thereby linearizing the response of the FDM. The major advantage of this 
linearization is that one can use the same proven algorithms that are used with solid 
deformable mirrors. 

Until recently, FDMs were thought to be restricted to corrections at frequencies lower 
than 10 Hz, thus limiting their usefulness. Recent experiments by Parent et al. [11] 
demonstrate that the operational frequency of FDMs can be increased to 1 kHz by increasing 
the viscosity of ferrofluids. 

In this article, we discuss wavefronts measurements produced by a 91-actuator FDM that 
uses this linearization technique. The experiments show high surface qualities and large 
strokes, demonstrating that FDMs are credible competitors to solid deformable mirrors 

2. Theory 

2.1 Linearization of the response of FDMs 

The deformation h produced on the ferrofluid is proportional to the square of the total 
magnetic field at the ferrofluid-air interface [7]. The technique to linearize the behavior of 
FDMs presented in [9, 10] consists of superposing a strong and uniform magnetic field to that 
produced by the actuators. The deformation h on the liquid surface caused by one actuator is 
then given by, 

 ( )2 2 2 2

0 0 0( ) 2 ,h kB k b B k b bB B= = + = + +  (1) 

where b is the magnetic field of the actuator, B0 the external and uniform magnetic field with 
B0 >> b, and k is a constant that depends on the physical properties of the liquid. The 
magnetic field B0 being uniform and b very small compared to B0, the only term that 
contributes to the local deformation is the term 2bB0. This has the effect of linearizing the 
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response of the actuators (h directly proportional to b) and also amplifies the maximum 
amplitude the mirror can produce (h directly proportional to B0). This method was 
demonstrated experimentally by Iqbal and Amara [9, 10] and later confirmed by Brousseau et 
al. [8]. 

Iqbal and Amara [10] used a Helmholtz coil in their setup to produce the required uniform 
external magnetic field. A Helmholtz coil produces a uniform magnetic field up to the 4

th
 

order derivative with respect to the position near the center of the coil [12]. While Iqbal and 
Amara were able to successfully demonstrate the linearization technique using a Helmholtz 
coil, they state, though they do not quantify, that the non-uniformity produced a curvature on 
the initial surface of the liquid [10]. Even if this residual wavefront can be compensated using 
the actuators, this is done at the expense of using stroke that would otherwise be available for 
the correction of incoming wavefronts. In regard of this, we opted to use a Maxwell coil 
instead of a Helmholtz coil. A Maxwell coil is made from 3 separate coils (see Fig. 1) and 
produces a uniform magnetic field up to the 6th order derivative with respect to the position 
near the center of the assembly [12]. The radii of the coils and their vertical position must 
respect the values given in Fig. 1. The number of ampere-turns of both the lower and upper 
coils must be exactly in the ratio of 49/64 relative to the middle coil. For design simplicity, it 
is much easier to adjust the number of turns of the lower and upper coils than to adjust their 
current. This way, the three coils can be arranged in a series circuit and supplied with a single 
current value. 

When the ratio of turns of the lower and upper coils is exactly 49/64 with respect to the 
middle one, the magnetic field at the center of a Maxwell coil is given by 

 
0 0

15
,

16

NI
B

R
µ=  (2) 

where N is the number of turns of the middle coil, R is the radius of the middle coil and I is 
the current supplied to the Maxwell coil. 

 

Fig. 1. Schematic of a Maxwell coil. The number of ampere-turns of the lower and upper coils 
must be exactly in the ratio 49/64 relative to the middle coil. Adjusting the number of turns 
following this proportion, instead of adjusting the current for each coil, represents the best 
choice as it allows assembling the three coils in a series circuit. 

2.2 Control of the FDM 

The linear driving method of FDMs allows the use standard methods of controlling the FDM 
surface. A wavefront wm produced by the deformable mirror is then given by a linear 
combination of the individual response functions of the actuators in the matrix form [13]: 

 ,
m
=w Ha  (3) 

where H is called the influence matrix and a is a vector made of the control signals of the 
actuators. For the case of a FDM, the control signals are the currents supplied to the actuators. 
Each column of the control matrix H represents the response function of a single actuator 
shifted to its corresponding location, while each row of H corresponds to a single wavefront 
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data sample. The matrix H is usually rectangular and needs to have more rows (data samples) 
than columns (actuators). To obtain a given targeted wavefront w, the solution for minimum 
variance of Eq. (3) gives the following vector of control signals to supply to the deformable 
mirror [14]: 

 1( ) ,−= t ta H H H w  (4) 

where the superscript t denotes the transpose matrix operation. Assuming that the mean 
wavefront error is zero, the total squared error between the targeted wavefront w and the 
wavefront wm produced by the deformable mirror is: 

 
2

,σ =
t
ε ε  (5) 

where ε is the wavefront error: 

 .
m

= −ε w w  (6) 

The RMS residual wavefront error is obtained by taking the square root of the total 
squared error divided by the number of data samples N and is given by 

 .
RMS

N
σ =

t
ε ε

 (7) 

3. The 91-actuator deformable mirror 

The FDM consists of 91 2.8-mm diameter custom coils (actuators) made by Dia-Netics, Inc. 
and hexagonally arranged (see left of Fig. 2). Each resin-coated coil consists of about 300 
turns of AWG36 magnet wire wound on a brass core having a 1-mm diameter and has a total 
length of 15 mm. The resistance of each coil is 2.8 ohms. The actuators are supplied in 

current by a custom amplifying stage that can deliver −200 to + 200 mA to each actuator at a 
resolution of 6 µA. The amplifying stage is controlled by a PD2-AO-96-16 96/16-bit analog 
output channels PCI card from United Electronic Industries. The current in each actuator is 
controlled using LabVIEW. 

The Maxwell coil was made by our machine shop from an aluminum piece and has a total 
height of 120 mm (see right of Fig. 2). The form was sent for winding with AWG20 magnet 
wire following the turn ratio shown in Fig. 1. The total resistance of the device is 7.5 ohms. 
Current in the Maxwell coil is supplied by a 0-10 A stabilized power supply. Using Eq. (2), 
the magnetic field produced at the center of the Maxwell coil is about 40 gauss when supplied 
with a 1.0 A current. 

The FDM is placed within the Maxwell coil with the top portion of the actuators lying 
near the middle of the coil form, where the magnetic field is uniform (see Fig. 3). A container 
filled with a 1-mm depth of EFH1 ferrofluid from Ferrotec Corp. sits on top of the actuators. 
A circular 50-mm diameter optical-quality BK7 window is used to protect the liquid surface 
from dust particles and air currents from the room air exchange system. 

 

Fig. 2. Pictures of the 91-actuator FDM (left) and Maxwell coil (right). The Maxwell coil is 

shown prior to winding. The three winding areas of Fig. 1 can clearly be seen. 
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Fig. 3. Schematic of the FDM assembly. The total height is 120 mm and the inside diameter of 
the container is 80 mm. A 1-mm thick layer of EFH1 ferrofluid is used. 

4. Results 

Our wavefront measurements were carried out using two different instruments: A Fizeau 
interferometer made by the ZYGO Corporation and a HASO HR44 Shack-Hartmann 
wavefront sensor made by Imagine Optics. The ZYGO interferometer was used for most of 
the measurements since it gives an excellent spatial resolution of the mirror surface and only 
requires a fold mirror for the measurements. All surface amplitudes given by the ZYGO were 
scaled by a factor of two to give wavefront amplitudes. However, the ZYGO interferometer 
cannot measure wavefronts having large amplitudes. While the HASO sensor has a poorer 
spatial resolution, it can measure large amplitude wavefront deformations. Consequently, we 
used it to make linearity measurements and produce a wavefront example at high amplitudes. 
All wavefront data from the HASO wavefront sensor were reconstructed using Imagine 
Optics software in zonal reconstruction mode. 

4.1 Driving the FDM 

A current of 500 mA was supplied to the Maxwell coil to produce a constant magnetic field 
of about 20 gauss at the liquid-air interface. With the Maxwell coil in operation, we measured 
an initial residual wavefront having a RMS amplitude of 0.10 µm compared to a RMS 
wavefront amplitude of 0.07 µm when the Maxwell coil was not in operation. Each actuator 
was then successively supplied with a current of 20 mA and its influence function recorded 
using the ZYGO MetroPro software. The pupil size of 23 mm in diameter was chosen to 
exclude the outer ring of actuators so as to better reproduce wavefronts having large slopes at 
the edge of the pupil [15]. Though the outer ring of actuators was excluded from the pupil, 
those actuators were active when using the FDM. The ratio of the pupil size relative to the full 
size diameter of the mirror is shown in Fig. 4. 

 

Fig. 4. Diameter of the pupil (shaded area) relative to the full diameter of the mirror used in for 
the ZYGO measurements. Pupil size is 23 mm and full diameter of the actuator array is 33 
mm. The outer ring of actuators is kept active when using the FDM. 

Figure 5 shows the typical x and y profiles of an actuator influence function recorded 
using the HASO wavefront sensor. Apart from slight differences in amplitudes, all actuators, 
including the ones at the pupil edge, produce identical influence function profiles. This is 
easily explained as there is any physical constraint on the mirror surface at the edges of the 
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actuators region. As in [7], the influence function is well described by a Gaussian profile and 
corresponds to a coupling constant of about 45%. Based on the response of a single actuator, 
we deduced a maximum stroke value of 8.75 µm for a single actuator at the maximum 
operating current of the stage amplifier. The stroke can easily be doubled by increasing the 
Maxwell coil current from 0.5 to 1.0 A and even higher strokes could be achieved using 
higher Maxwell coil currents. 

 

Fig. 5. Typical x and y profiles of the influence function of a single actuator when supplied 
with a current of 20 mA. The wavefront profiles were obtained using the HASO wavefront 
sensor. 

Figure 6 shows an example of the linearity advantage obtained using the new driving 
technique. The data points in blue on the figure shows, the influence functions of the central 
actuator (#1) and its nearest left neighbor (#2) when both are independently driven in opposite 
directions (push and pull), along with the response when both are driven simultaneously (red 
dashed line), and the arithmetic addition of the individual response of each actuator (black 
dashed line). Figure 6 also illustrates that the actuators now have push-pull ability as opposed 
to driving FDMs without an external magnetic field. 

 

Fig. 6. Linear addition of influence functions. Data shown in blue are for actuator #1 (at pupil 
center) and actuator #2 (nearest left neighbor) when both are actuated separately in opposite 
directions. The red dashed line shows the response of the FDM when both actuators are driven 
simultaneously. The black dashed curve shows the arithmetic addition of the individual 
responses. The wavefront profiles were obtained using the HASO wavefront sensor. 
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Figure 7a shows the PV amplitude of the influence function of the FDM central actuator 
as a function of current when the Maxwell coil is supplied with a constant current of 0.5 A. A 
linear fit of the data (in red) shows that the response of the actuator has become linear. Figure 
7b shows the PV amplitude of the influence function of the FDM central actuator when it is 
supplied with a constant current of 20 mA, but current in the Maxwell coil is varied from 0.2 
to 1.0 A. Again, the response is linear and confirms that the Maxwell coil can be used to both 
linearize and amplify the response of FDMs. 

 

Fig. 7. (a) Amplitude response of the FDM central actuator as a function of current when the 
Maxwell coil is supplied with a constant current of 0.5 A. (b) Amplitude response of the FDM 
central actuator when the current in the Maxwell coil is varied from 0.2 to 1.0 A. A current of 
20 mA in the central actuator was used for (b). Linear fits of the data are shown in red. The 
wavefront amplitudes were obtained using the HASO wavefront sensor. 

The control matrix H was constructed from the recorded influence functions of the 91 
actuators. The required signals (currents) to produce the first 36 Zernike polynomials 
following the OSA numbering scheme [16] were computed from Eq. (4) using singular value 
decomposition. Each Zernike polynomial was targeted to a PV wavefront amplitude of 4 µm. 
The wavefront error ε was calculated for each Zernike using Eq. (6). Currents to reproduce 
this residual wavefront error were then computed using Eq. (4). The Zernikes were then 
further optimized by subtracting this current vector from the currents of the first run using a 
gain of 0.6. A third iteration on the currents was found to be unnecessary since the residuals 
stopped to decrease. Figure 8 shows Zernikes Z2

0
 to Z4

0
 after the second current iteration. In 

principle, these iterations should only be done once for each term. Once the best current 
vector of each Zernike is found and unless the ferrofluid is replaced, it should be possible to 
keep these currents as a reference set to reproduce Zernikes of different amplitudes by scaling 
their appropriate current vector. Measurements of a scaled defocus appearing further down in 
this section confirm this (see Fig. 10). Section 4.3 also confirms this by showing the over-
time repeatability of some Zernikes using the optimized current vectors. 
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Fig. 8. Zernike polynomials from Z2
0 to Z4

0 produced by the FDM and measured with a ZYGO 
interferometer. Grid units are in millimeters and wavefront amplitude is measured in µm. 

The RMS wavefront residuals were calculated for each Zernike using Eq. (7) and results 
appear as a bar chart in Fig. 9a. The higher residual RMS errors seen on terms 12 and 24 (Z4

0
 

and Z6
0
) are in agreement with numerical simulations that use the addition of Gaussian 

influence functions over a circular pupil. Based on those residual errors, we extrapolated the 
maximum wavefront amplitude coefficient that would be achievable with the 91-actuator 
FDM while keeping constant the residual wavefront RMS error to λ/10 at 632.8 nm. The 
results are given by the bar chart in Fig. 9b. It can be seen that the achievable mean 
coefficient amplitude over all terms is over 15 µm with some terms even over 35 µm while 
still keeping a residual error of λ/10. Note that wavefronts having even higher amplitudes and 
comparable residuals would be possible by increasing the number of actuators and using a 
higher current in the Maxwell coil. 

As an example of the performance of the FDM, we corrected the initial wavefront caused 
by the Maxwell coil on the liquid surface. The initial surface of the mirror was successfully 
flattened from a wavefront RMS amplitude of 0.10 down to a wavefront RMS value of 0.006 
µm. 
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Fig. 9. (a) Residual wavefront RMS error for the first 36 Zernike polynomials (excluding 
piston, tip and tilt) obtained with the FDM. Targeted PV wavefront amplitude of the Zernikes 
was 4 µm. (b) Computed maximum achievable Zernike amplitudes for a targeted residual 
wavefront RMS error of λ/10 (at 632.8 nm) using the data from (a). 

 

Fig. 10. Amplitude of Z2
0 as a function of a current scaling factor relative to the currents that 

were found to produce a Z2
0 wavefront having a PV amplitude of 4 µm. A linear fit of the data 

is shown in red. 

The HASO wavefront sensor was used to confirm the results at higher amplitudes. For 
example, Fig. 10 shows the amplitude of Z2

0
 as a function of a current scaling factor relative 

to the current vector that was found to produce it with at a PV amplitude of 4 µm. The results 
show that the linearity of the FDM still holds at large amplitudes. As another high amplitude 
example, Fig. 11 shows an astigmatism term having a PV amplitude of 20 µm (left) and its 
residual wavefront error at right. The residual wavefront has a RMS of 0.044 µm. Both Fig. 
10 and 11 confirm the large wavefront amplitudes the FDM can achieve. 
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Fig. 11. A 20 µm PV astigmatism produced by the 91-actuator FDM (left). The residual 
wavefront (right) has a RMS error of 0.044 µm. Grid units are in millimeters and amplitude is 
measured in µm. Wavefronts measured using an Imagine Optics HASO HR44 wavefront 
sensor. 

4.2 Combination of Zernikes 

In section 4.1, we obtained current vectors to produce the first 36 Zernike polynomials. 
Because the system now has a linear response, it should be possible to produce wavefronts, 
expressed as a combination of these Zernikes, by linearly adding the current vector of each 
Zernike scaled by the appropriate amount of each coefficient. To test this, we constructed a 

targeted wavefront by using a combination of Zernikes Z2
−2

, Z2
0
, Z2

2
, Z3

−1
 and Z3

1
 having 

coefficient amplitudes of 0.4, 0.3, 0.3, 0.3 and 0.1 µm respectively. This theoretical wavefront 
can be seen at the left of Fig. 11. 

 

Fig. 12. Wavefronts obtained by combination of Zernikes polynomials. The targeted wavefront 
can be seen at left while the FDM experimental wavefront is at center. The residual wavefront 
is shown at right. Residual wavefront RMS error is 0.01 µm. Grid units are in millimeters and 
amplitude is measured in µm. 

The currents obtained for each of the 5 Zernikes were scaled and added according to their 
coefficient content in the targeted wavefront. This current vector was then supplied to the 
actuators and the resulting wavefront can be seen at the middle of Fig. 12. The residual 
wavefront error can be seen at the right of Fig. 8 and the residual wavefront RMS error is 0.01 
µm. This demonstrates that this FDM can also be driven in modal mode and also allows for 
open-loop driving when the Zernike content of the incoming wavefront is known. This could 
have a major impact in optical null-testing of aspherics for example [17]. 

4.3 Repeatability 

We verified the repeatability of the FDM at producing Zernikes of constant amplitude over 

time using their corresponding current vector. The current vectors of Zernike Z2
−2

, Z2
0
 and 

Z3
−1

 were scaled and applied to the actuators four times over the course of three days and the 
corresponding Zernike coefficient were extracted from the ZYGO measurements. Table 1 
presents the results. It can be seen that once an optimized current vector that produces a given 
Zernike is found, this current vector can be scaled to produce Zernikes (or combination of 
Zernikes) of varying amplitude, as also demonstrated by Fig. 10, and that this calibration 
remains constant over time. From the data of Table 1, we computed that the over-time 
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repeatability of the FDM at producing Zernikes having specific targeted coefficient 
amplitudes is better than 1.5%. 

Table 1. Repeatability measurements of the 91-actuator FDM 

Zernike  Z2
−2 Z2

0 Z3
−1 

Targeted amplitude 
 [µm] 

 1.500 1.000 0.500 

     
Measurement # 1  1.504 1.012 0.500 

Measurement # 2  1.503 0.999 0.502 

Measurement # 3  1.498 0.998 0.498 

Measurement # 4  1.514 1.012 0.504 

5 Conclusion 

We demonstrated a 91-actuator magnetic liquid mirror that can be driven by a standard zonal 
driving technique. The linear response of the mirror is obtained by superposing a uniform 
magnetic field to that of the actuators. This external constant magnetic field also amplifies the 
response of the actuators, allowing strokes of tens of microns. A non-linear response was a 
major inconvenience on previous FDMs. It will be much simpler to implement a closed-loop 
system now that there exists a way to linearly drive FDMs. 

The first 36 Zernikes polynomials were reproduced with a residual wavefront RMS error 
lower than 0.05 µm for all terms having a targeted PV amplitude of 4 µm. We were limited to 
this low-amplitude by the Fizeau interferometer which was chosen for its excellent spatial 
resolution and the lower number of optical components necessary to perform the 
measurements. A large amplitude wavefront having a PV amplitude of 20 µm was 
demonstrated using a Shack-Hartmann wavefront sensor. Linearity of the FDM response was 
demonstrated for a defocus coefficient of 2 to 17 µm. Even larger amplitudes can easily be 
obtained but we are limited by the maximum slopes the Shack-Hartmann can measure. From 
Fig. 9 we conclude that the achievable mean PV amplitude over all terms, while keeping a 
residual error of λ/10, is over 30 µm with some terms even over 70 µm. Even greater 
amplitudes and lower residuals could be obtained by increasing the number of actuators and 
using a higher current for the Maxwell coil. These values are higher than the maximum 50 
µm (tilt) of the commercially available Imagine Eyes mirao 52-e deformable mirror that relies 
on the electromagnetic deformation of a magnetic membrane, which is, technologically, the 
deformable mirror that is the closest to a FDM. 

The 45% coupling constant of the FDM could be somewhat reduced on future versions by 
increasing the inter-actuator distance. This would help reducing residual errors on wavefronts 
containing higher spatial frequencies. 

No noticeable power dissipation in the actuators was detected within the available +/− 200 
mA current range. Power dissipation was only noticed for Maxwell coil currents over 1.5 A. 
But, from crude measurements, using the Maxwell coil below 1 A already makes possible the 
production of wavefronts having PV amplitudes of over 50 µm. Construction of the Maxwell 
coil could also be optimized, e.g. using lower wire gauge to reduce resistance, to give an 
amplification factor allowing PV wavefront amplitudes over one hundred microns. 
Ferrofluids have a low vapor pressure and we did not notice any evaporation during the 
months we have been using the FDM. As for the coatings, chemists within our team are still 
working on optimizing their reflectivity and robustness. 

The optimized current vectors obtained for each Zernike term can be combined linearly to 
form high amplitude wavefronts having low residuals with over-time repeatability better than 
1.5%. 

While the early FDMs that we produced [7] seemed promising, they were early-stage 
prototypes with parameters substantially inferior to that of many commercial deformable 
mirrors (e.g. smaller number of actuators and non-linear response). However, the 91-actuator 
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FDM presented in this paper has a number of actuators comparable to the number available in 
high-end commercial mirrors as well as a superior performance both in available stroke and 
residuals. A remarkable feature of this prototype is that it was made without sophisticated 
technology and within a short time scale using the limited resources typically available in a 
University laboratory. We emphasize this point because it illustrates the other major 
advantages of FDMs: their simplicity and low-cost. These new FDMs that have a linear 
response can produce wavefront amplitudes that no other commercial deformable mirror can 
produce. By its low cost, simple design and low residuals, it represents a promising solution 
for both adaptive optics applications and optical testing. 
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